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Abstract

In this paper, a numerical study of natural convection in a 2D-enclosure is presented. The enclosure is bounded by two vertical isothermal
walls, kept at different temperatures, and by two adiabatic walls which are either straight and horizontal (rectangular cavity) or elliptic (modified
rectangular cavity). The dimensionless mass, momentum and energy balance equations are solved by means of two different software packages
based on Galerkin finite element methods. An excellent agreement between the solutions is found and provides a cross-validation of the results.
Two basic geometries are considered: a square geometry and a rectangular one with height double the width. For each basic geometry, three
cavities are investigated: a rectangular cavity, and two modified rectangular cavities. Dry air is considered, with several values of the Rayleigh
number. The results show that the elliptic boundaries enhance the mean Nusselt number and the dimensionless mean kinetic energy of the fluid.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction

In the literature, the natural convection in 2D rectangular
cavities with two isothermal and two adiabatic walls has been
widely investigated. Indeed, this convection problem has many
technical applications, such as thermal insulation in buildings
and solar collector design. Particular attention has been devoted
to the case of vertical isothermal walls [1,2]. Interesting reviews
of the theoretical studies on this subject have been presented in
[2,3].

The shape of a rectangular cavity is determined by the value
of the aspect ratio A, given by the height to width ratio. Ana-
lytical solutions refer either to “tall enclosures” (A � 1), or to
“shallow enclosures” (A � 1). The mean Nusselt number for
tall enclosures with vertical isothermal walls has been evalu-
ated by Gill [4] and by Bejan [5]. The mean Nusselt number
for shallow enclosures has been evaluated in [6–8]. As it has
been pointed out by Bejan [3], when the parameter A has val-
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ues close to 1, analytical or semi-analytical techniques are no
longer applicable; in this case, numerical solutions and experi-
mental investigations must be employed.

Many numerical or experimental papers on natural convec-
tion in vertical or inclined rectangular cavities are available in
the literature [9–17]. An accurate benchmark solution for free
convection of air (Pr = 0.71) in a square cavity with vertical
boundaries kept at different temperatures is presented in [12],
with reference to 103 < Ra < 106. In [13] an experimental
and numerical analysis of free convection of air in a square
inclined cavity is presented. The Authors provide an experi-
mental correlation for the mean Nusselt number, in the range
104 < Ra < 106, which is in good agreement with the nu-
merical results reported in [12]. Another benchmark solution
for natural convection of air in a square cavity, with the same
boundary conditions, is reported in [14] for 104 < Ra < 106.
The comparison with the results reported in [12] reveals excel-
lent agreement, especially for Ra = 104 and Ra = 105. Finally,
Nonino and Croce [16] have extended the results presented
in [12,14] to the case of higher values assumed by Ra, i.e.
105 < Ra < 108. Calculations at even higher values of Ra,
which lead to time-dependent solutions, have been reported,
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Nomenclature

A, B aspect ratios
D, H lengths of the rectangle sides
Ekin dimensionless kinetic energy, defined in Eq. (26)
�Ekin dimensionless mean kinetic energy, defined in

Eq. (27)
g magnitude of the gravitational acceleration
k thermal conductivity
L computational parameter
Num mean Nusselt number, defined in Eq. (24)
Nu′

m mean Nusselt number, defined in Eq. (25)
P difference between the pressure and the hydrostatic

pressure
p̂ pressure
p dimensionless pressure, defined in Eq. (9)
Pr Prandtl number
Ra Rayleigh number, defined in Eq. (9)
S dimensionless computational domain
T temperature

Th, Tc wall temperatures
T0 mean value of the temperature
t dimensionless temperature, defined in Eq. (9)
U X component of the fluid velocity
u dimensionless x-velocity
V Y component of the fluid velocity
v dimensionless y-velocity
X, Y rectangular coordinates
x, y dimensionless coordinates, defined in Eq. (9)

Greek symbols

α thermal diffusivity
β volumetric coefficient of thermal expansion
μ dynamic viscosity
ν kinematic viscosity
�0 mass density for T = T0

Φ , Ψ functions defined in Eq. (14)
among others, by Le Quéré [18] and Nobile [19]. Recently, the
effect of modifications of the cavity shape on the heat transfer
rate has been investigated in [17].

In the present paper, the natural convection of a Newtonian
fluid in a 2D-cavity is studied numerically. The boundary of
the cavity is composed of two vertical isothermal walls, kept
at different temperatures, and two adiabatic walls. The latter
walls are either horizontal straight lines (rectangular cavity) or
elliptic arcs (modified rectangular cavity). The shape of a mod-
ified rectangular cavity is characterized by the aspect ratio A,
defined above, and the aspect ratio B , given by the ratio be-
tween the length of the shorter axis and that of the longer axis
of the elliptic arc. The local mass, momentum and energy bal-
ance equations are written in a dimensionless form suitable for
the numerical solution and solved by means of two different
software packages, based on Galerkin finite element methods.
The software packages employed are FlexPDE 3.0 (© PDESo-
lutions, Inc. [20]) and FEMLAB 3.0 (© Comsol, AB [21]).

With reference to a Prandtl number equal to 0.71, two values
of the aspect ratio A, A = 1 and A = 2, and three values of the
aspect ratio B , B = 0 (rectangular cavity), B = 0.2 and B = 0.4
(modified rectangular cavities), are considered. For each pair of
values of the aspect ratios, the temperature field, the velocity
field and the mean Nusselt number are evaluated for given val-
ues of the Rayleigh number. The results obtained by employing
the different software packages are compared. For the special
case of a square cavity, a comparison with the results available
in the literature is performed. For all the cavities considered, the
results obtained with the two packages are in excellent agree-
ment, and the comparison with the benchmark results for the
square cavity is also very good. Moreover, it is found that the
replacement of straight horizontal walls with elliptic arcs sig-
nificantly affects the flow and temperature fields, thus yielding
an increase of the heat transfer rate.
Fig. 1. Drawing of the cavity.

2. Mathematical model

Consider a Newtonian fluid contained in a 2D-cavity bound-
ed by two vertical parallel walls and two walls, which are either
straight and parallel (rectangular cavity) or elliptic (modified
rectangular cavity), as shown in Fig. 1 together with the chosen
coordinate axes (X,Y ).

Assuming constant values for the thermal conductivity k, the
thermal diffusivity α and the dynamic viscosity μ of the fluid,
neglecting the effect of viscous dissipation and adopting the
Boussinesq approximation, the mass, momentum and energy
balance equations can be written as

∂U

∂X
+ ∂V

∂Y
= 0 (1)

U
∂U + V

∂U = − 1 ∂P + ν

(
∂2U

2
+ ∂2U

2

)
(2)
∂X ∂Y �0 ∂X ∂X ∂Y
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U
∂V

∂X
+ V

∂V

∂Y

= − 1

�0

∂P

∂Y
+ gβ(T − T0) + ν

(
∂2V

∂X2
+ ∂2V

∂Y 2

)
(3)

U
∂T

∂X
+ V

∂T

∂Y
= α

(
∂2T

∂X2
+ ∂2T

∂Y 2

)
(4)

In Eqs. (1)–(4), U and V are the velocity components along
X and Y , �0 is the fluid density at the reference temperature
T0, ν = μ/�0 is the kinematic viscosity, p̂ is the pressure and
P = p̂ + �0gY is the difference between the pressure and the
hydrostatic pressure.

The vertical walls are kept isothermal with two different
temperatures Th and Tc, i.e.

T

(
−D

2
, Y

)
= Th, T

(
D

2
, Y

)
= Tc (5)

The other walls are adiabatic, i.e. are subjected to the thermal
boundary condition

∂T

∂n
= 0 (6)

where the notation ∂/∂n indicates the normal derivative.
The reference temperature is chosen as the mean value of the

wall temperatures, i.e.

T0 = Th + Tc

2
(7)

As usual, the boundary conditions for the velocity field are the
no-slip conditions, i.e.

U = V = 0 (8)

Let us define the following dimensionless variables:

u = UD

α
, v = V D

α
, t = T − T0

Th − Tc

p = D2P

�0αν
, x = X

D
, y = Y

D
, A = H

D

Ra = gβ(Th − Tc)D
3

να
, Pr = ν

α
(9)

On account of Eq. (9), Eqs. (1)–(4) can be rewritten in the di-
mensionless form

∂u

∂x
+ ∂v

∂y
= 0 (10)

1

Pr

(
u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ ∂2u

∂x2
+ ∂2u

∂y2
(11)

1

Pr

(
u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ Ra t + ∂2v

∂x2
+ ∂2v

∂y2
(12)

u
∂t

∂x
+ v

∂t

∂y
= ∂2t

∂x2
+ ∂2t

∂y2
(13)

For the use of the software package FlexPDE, Eqs. (10)–(13)
must be modified to obtain an equation which contains the
Laplacian of the dimensionless pressure p. For this purpose,
the following functions are defined:

Φ = u
∂u + v

∂u
, Ψ = u

∂v + v
∂v

(14)

∂x ∂y ∂x ∂y
On account of Eqs. (10) and (14), by differentiating Eq. (11)
with respect to x, Eq. (12) with respect to y, and by summing
the obtained equations, one gets:

∂2p

∂x2
+ ∂2p

∂y2
= Ra

∂t

∂y
− 1

Pr

(
∂Φ

∂x
+ ∂Ψ

∂y

)
(15)

The set of Eqs. (10)–(13) can be replaced by the set of
Eqs. (11)–(13), (15). However, since Eq. (15) has been obtained
from the previous set of equations through differentiation, it is
not sure that all the solutions of the new set of differential equa-
tions satisfy the local mass balance equation, i.e. Eq. (10). For
this reason, one can force the validity of Eq. (10) in Eq. (15), by
adding to the right-hand side of the latter the left-hand side of
Eq. (10) multiplied by an arbitrary parameter L. Thus, the un-
known fields u, v, p, and t can be determined by solving either
Eqs. (10)–(13) or the following set of differential equations:

∂2p

∂x2
+ ∂2p

∂y2

= Ra
∂t

∂y
− 1

Pr

(
∂Φ

∂x
+ ∂Ψ

∂y

)
+ L

(
∂u

∂x
+ ∂v

∂y

)
(16)

∂2u

∂x2
+ ∂2u

∂y2
= ∂p

∂x
+ 1

Pr
Φ (17)

∂2v

∂x2
+ ∂2v

∂y2
= ∂p

∂y
− Ra t + 1

Pr
Ψ (18)

∂2t

∂x2
+ ∂2t

∂y2
= u

∂t

∂x
+ v

∂t

∂y
(19)

The set of differential equations (10)–(13) or (16)–(19) must be
coupled with the following boundary conditions:

u = v = 0 on the whole boundary (20)

t

(
−1

2
, y

)
= 1

2
, t

(
1

2
, y

)
= −1

2
(21)

∂t

∂n
= 0 on the upper and lower walls (22)

It will be assumed that the upper and lower walls have a semi-
elliptical shape, with the same eccentricity. As a consequence,
the shape of the domain is determined by two dimensionless
parameters: the height to width ratio A and the parameter B ,
which is defined as the ratio between the semi-axes of each
ellipsis (Fig. 2). For instance, for B = 0 the cavity has a rec-
tangular shape, while for B = 1 the curvilinear walls are semi–
circles. Thus, the system of equations (10)–(13) or (16)–(19),
coupled with the boundary conditions (20)–(22), determines
uniquely the fields u, v, and t for fixed values of the parameters
Ra, Pr, A and B . If Eqs. (16)–(19) are used, computations must
be performed with increasing values of L, until the dependence
of the solution on this parameter becomes negligible.

In Eqs. (10)–(22) only derivatives of the pressure field ap-
pear; for this reason, p is determined only up to an arbitrary
constant. If FlexPDE is employed, this constant can be fixed,
for instance, through the constraint∫

p dx dy = 0 (23)
S
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Fig. 2. Drawing of the modified rectangular cavity.

On the other hand, if FEMLAB is employed instead of utilizing
Eq. (23) a point value for the dimensionless pressure field is
fixed.

The mean Nusselt number can be determined with reference
either to the wall x = −1/2 or to the wall x = 1/2. Thus, one
has

Num = − 1

A

A/2∫
−A/2

∂t

∂x

∣∣∣∣
x±1/2

dy (24)

An energy balance applied to the whole cavity implies that the
two mean Nusselt numbers coincide. Another interesting para-
meter is the dimensionless kinetic energy of the fluid, defined
as

Ekin = u2 + v2

2
(25)

Obviously, the dimensionless mean kinetic energy of the fluid
is given by

�Ekin = 2

4A + πB

∫
S

(
u2 + v2)dS (26)

3. Numerical solution

The boundary value problem described by Eqs. (16)–(23)
has been solved by means of the software package FlexPDE
(© PDESolutions, Inc.). FlexPDE creates within the compu-
tational domain an unstructured mesh, composed of triangular
elements, and refines it iteratively by an adaptive procedure.
This procedure ends when a prescribed value of the system-
defined accuracy parameter Errlim is reached. Additional con-
straint equations (in our case, Eq. (23)) are allowed. For each
set of values of A, B , Ra and Pr, computations have been per-
formed with several different pairs of values of the parameters
L and Errlim, in order to ensure both the independence of L

and the grid independence of the results.
The boundary value problem described by Eqs. (10)–(13)

and (20)–(22) has been solved by employing the software pack-
age FEMLAB (© Comsol, AB). FEMLAB is a FEM based
package to perform equation-based multiphysics modelling. It
is possible to perform free-form entry of custom partial differ-
ential equations (PDEs) or use specialized physics application
modes. A nonlinear solver has been used and the nonlinear
tolerance has been set to 1e−11. FEMLAB offers the choice
between the use of unstructured triangular meshes and quadri-
lateral structured ones. Both have been used at different refine-
ment levels. As expected, the structured meshes show to be
more efficient in reaching a grid independent result.

In the present paper, the following values of the parameters
have been considered: Pr = 0.71; A = 1 and A = 2; B = 0,
B = 0.2 and B = 0.4; Ra = 103, Ra = 3 × 103, Ra = 104,
Ra = 3 × 104 and Ra = 105.

4. Results and discussion

First, the square cavity has been investigated, in order to
compare the obtained results with the bench-mark solutions
available in the literature [10,12]. In Table 1, the values of the
mean Nusselt number obtained with FlexPDE and with FEM-
LAB are compared with those reported in Refs. [10,12], for air
(Pr = 0.71) and for Ra in the range 103 < Ra < 105. The com-
parison reveals an excellent agreement.

Then, two more geometries have been studied for A = 1,
having elliptic boundaries with B = 0.2 and B = 0.4. The
obtained values of the mean Nusselt number, reported in Ta-
ble 2, reveal a good agreement between the results obtained
with FlexPDE (Roman) and with FEMLAB (Italic). Moreover,
they show that the insertion of the elliptic boundaries strongly
enhances the mean Nusselt number, for all the considered val-
ues of Ra, even for small values of B . For B = 0.2, the in-
crease of Num ranges from 10.5%, for Ra = 105, to 20.2% for
Ra = 3 × 103. For B = 0.4, the growth of Num ranges from

Table 1
Comparison with the benchmark values of the Nusselt number available in the
literature

Ra Num [12] Num [14] Num

FlexPDE Femlab

103 1.118 – 1.118 1.118
104 2.243 2.245 2.245 2.245
105 4.519 4.522 4.520 4.522

Table 2
Mean Nusselt number, for A = 1, evaluated with FlexPDE (Roman) or with
FEMLAB (Italic)

Ra B = 0 B = 0.2 B = 0.4
Num Num Num

103 1.118 1.310 1.467
103 1.118 1.322 1.484

3 × 103 1.504 1.802 2.010
3 × 103 1.504 1.814 2.046

104 2.245 2.614 2.859
104 2.245 2.629 2.906

3 × 104 3.141 3.552 3.824
3 × 104 3.142 3.574 3.872

105 4.520 4.982 5.268
105 4.522 5.007 5.308
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Fig. 3. Contour plots of the dimensionless kinetic energy distribution, for
A = 1, B = 0 and Ra = 104.

Fig. 4. Contour plots of the dimensionless kinetic energy distribution, for
A = 1, B = 0.4 and Ra = 104.

17%, for Ra = 105, to 34.8%, for Ra = 3 × 103. The elliptic
boundaries enhance the Nusselt number because they assist the
convection flow and increase the fluid velocity, especially close
to the vertical walls. This effect of the elliptic boundaries is il-
lustrated in Figs. 3 and 4.

Fig. 3 refers to a square cavity with Ra = 104. It shows that
the dimensionless kinetic energy reaches its absolute maximum
in two zones close to the isothermal walls, and that two rela-
tive maxima take place close to the adiabatic walls. The shape
of the cavity forces the flow in circular paths, and determines
wide stagnation zones not only in the central core, but also at
the corners of the cavity. Fig. 4 refers to a cavity with A = 1
and B = 0.4, again with Ra = 104. The figure shows that the
elliptic boundaries eliminate the stagnation zones at the corners
and enhance the kinetic energy of the fluid close to the vertical
walls.

The values of the dimensionless mean kinetic energy of the
fluid, for A = 1, are reported in Table 3. The table reveals that
Ekin is both an increasing function of Ra, for each fixed value
of B , and an increasing function of B , for each fixed value of
Ra. Only for Ra = 105, the value of Ekin decreases if B in-
creases from B = 0.2 to B = 0.4. However, the local values of
Ekin close to the isothermal walls increase when B increases
from B = 0.2 to B = 0.4, even for Ra = 105.
Table 3
Dimensionless mean kinetic energy, for A = 1, evaluated with FlexPDE (Ro-
man) or with FEMLAB (Italic)

Ra B = 0 B = 0.2 B = 0.4
�Ekin �Ekin �Ekin

103 2.920 4.266 5.191
103 2.920 4.265 5.191

3 × 103 16.24 21.31 24.33
3 × 103 16.24 21.30 24.32

104 64.88 77.72 84.33
104 64.82 77.68 84.24

3 × 104 169.6 187.0 191.6
3 × 104 169.3 186.7 191.2

105 434.1 449.2 440.0
105 433.2 448.5 437.4

Table 4
Mean Nusselt number, for A = 2, evaluated with FlexPDE (Roman) or with
FEMLAB (Italic)

Ra B = 0 B = 0.2 B = 0.4
Num Num Num

103 1.191 1.263 1.315
103 1.191 1.268 1.331

3 × 103 1.645 1.743 1.813
3 × 103 1.644 1.750 1.835

104 2.353 2.486 2.569
104 2.352 2.497 2.609

3 × 104 3.147 3.316 3.420
3 × 104 3.146 3.326 3.458

105 4.303 4.497 4.606
105 4.301 4.508 4.648

Table 5
Dimensionless mean kinetic energy, For A = 2, evaluated with FlexPDE (Ro-
man) or with FEMLAB (Italic)

Ra B = 0 B = 0.2 B = 0.4
�Ekin �Ekin �Ekin

103 8.038 8.606 8.957
103 8.038 8.606 8.958

3 × 103 38.99 41.87 43.49
3 × 103 38.98 41.86 43.49

104 147.8 158.9 163.9
104 147.6 158.6 163.6

3 × 104 368.8 396.6 405.8
3 × 104 367.4 395.1 404.1

105 863.6 907.1 907.6
105 857.0 899.8 900.2

With reference to the geometries with A = 2, the cases
B = 0 (rectangular cavity), B = 0.2 and B = 0.4 (modified rec-
tangular cavities) have been investigated. The obtained values
of the mean Nusselt number are reported in Table 4, while the
values of the dimensionless mean kinetic energy are reported
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in Table 5. Again, the results obtained with FlexPDE (Roman)
are in good agreement with those obtained through FEMLAB
(Italic). Table 4 shows that, with A = 2, the insertion of ellip-
tic walls induces an enhancement of the heat exchange smaller
than in the case A = 1. Similarly, Table 5 shows that the per
cent growth of Ekin with B is less important for A = 2 than for
A = 1. Finally, a comparison between Tables 3 and 5 reveals
that, for any fixed value of Ra, the parameter Ekin has higher
values for A = 2 than for A = 1.

5. Conclusions

The natural convection in a 2D-cavity with two vertical
isothermal walls, kept at different temperatures, and two adi-
abatic walls which are either straight (rectangular cavity) or el-
liptic (modified rectangular cavity), has been investigated. Two
numerical software packages, FlexPDE and FEMLAB, have
been employed and the results, which refer to dry air, have
displayed very good agreement. Values of the Rayleigh num-
ber in the range 103 � Ra � 105 have been considered. The
good agreement between the results, together with an excellent
agreement with the benchmark solutions for the special case of
a square cavity, ensures the reliability of the results obtained.
The study has evidenced that, if the straight bottom and top
walls of a rectangular cavity are replaced by elliptical walls,
a strong enhancement of the mean Nusselt number and of the
dimensionless mean kinetic energy of the fluid arises.
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